Studies on Aqueous Solutions of Guanidinium Salts. VIII. Free Energy of Mixing of Guanidinium Bromide and Tetrabutylammonium Bromide in Aqueous Solution at 25 °C

Koichiro Miyajima, Hiromitsu Yoshida, and Masayuki Nakagaki*

Faculty of Pharmaceutical Sciences, Kyoto University Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606

(Received March 18, 1978)

Osmotic and activity coefficients have been determined by the isopiestic comparison method on the water-guanidinium bromide-tetrabutylammonium bromide system at 25 °C. The values of the excess free energy change of mixing and the interaction parameter g_0 on Friedman's formalism were large and negative in magnitude. These results have been discussed in terms of the mixed ion pairing and structural change of water.

Guanidinium salts and their related compounds are well known as protein denaturants, but the mechanism of the denaturation remains ambiguous. Two types of mechanism have so far been postulated, one is the direct interaction between the acid amide groups of proteins and denaturants leading to the destruction of the hydrogen bond between the acid amide groups and the other is the indirect interaction between proteins and denaturants through the change of water structure which stabilizes the natural conformation of protein in the aqueous solution. Robinson and Jencks1) investigated the former mechanism by examining the effect of several perturbants on the activity coefficient of acetyltetraglycine ethyl ester. By measuring the solubility they concluded that the non-hydrophobic interaction made a major contribution to the effectiveness of perturbants in protein denaturation in aqueous solution. Kauzmann²⁾ and Tanford³⁾ suggested that the hydrophobic bond played an important role in the stability of tertiary or higher structures of proteins. aqueous ternary systems containing urea and hydrocarbons, urea increased the solubility of the latter.4) Similarly the decrease in the activity coefficient of tetrabutylammonium bromide (Bu₄NBr) and a positive enthalpy of transfer were obtained for the water-ureatetraalkylammonium salt system. 5,6) Potassium bromide, on the other hand, increased the activity coefficient of tetrapropylammonium bromide in the aqueous ternary system.⁷⁾ These results were discussed in terms of the changes of the hydrophobic interactions by the structure breaking of potassium bromide and urea. 5-7) Based on the similartities of molecular shape, size and functional groups between urea and the guanidinium ion (Gu+), the authors postulated8) that the mechanism of the structure breaking by the guanidinium ion was similar to that by urea rather than by large alkali metal ions such as potassium and caesium ions. The differences would be more pronounced in aqueous solutions containing structure making solutes such as tetraalkylammonium salts than in pure water. thermodynamic function of mixing in aqueous electrolyte solutions has been studied mainly on inorganic salt mixtures, several cases containing tetraalkylammonium salt as a component. The free energy change of mixing of Bu₄NBr and guanidinium bromide (GuBr) has been studied by the isopiestic comparison method and the results discussed in terms of the interionic interaction and the hydrophobic hydration.

Experimental

Materials. Guanidinium bromide was obtained by concentrating the aqueous solution of guanidine neutralized with hydrobromic acid. The crystal obtained was recrystallized twice or more from acetone and dried in vacuo before use. Tetrabutylammonium bromide was purchased from Wako Junyaku Co., Ltd. and recrystallized twice or more from the mixed solvent (ethyl acetate: diethyl ether=3:1).

Method. Measurements of osmotic coefficients were carried out by the isopiestic comparison method at 25±0.02 °C using the same apparatus as reported previously.9) In order to calculate the molality of each ternary solution, buoyancy corrections were made adopting the densities of the solid as 1.894 for GuBr, 1.152 for Bu₄NBr, and unity for the aqueous solutions. Both GuBr and Bu₄NBr were used as reference solutes. The experimental determination of the isopiestic concentration were precise to within 0.5%.

Theory

Activity Coefficient. Mckay and Perring's method¹⁰ was used to evaluate the activity coefficients of each component in the ternary solution which was prepared by mixing two kinds of 1: 1 electrolyte solutions. Under the conditions of equal vapour pressure among the three solutions, i.e. of GuBr (solute B), Bu₄NBr (solute C) and a mixture of both of them, the relation of Eq. 1 holds.

$$\nu_{\rm B} M_{\rm B} \phi_{\rm B} = \nu_{\rm C} M_{\rm C} \phi_{\rm C} = \nu m \phi, \tag{1}$$

where v_B and v_C are the number of moles of ions formed from 1 mol of solute B and C, M_B and M_C are the molality of solute B and C in the binary solutions which have the corresponding osmotic coefficients ϕ_B and ϕ_C , respectively. v is the number of ions formed from 1 mol of pseudo-binary salt $(1-x)Gu^+xBu_4N^+Br^-$ and m is the total molality of the ternary solution which has the corresponding osmotic coefficient ϕ . x is the ionic mole fraction of electrolyte C in the mixture defined as

$$x = m_{\rm C}/m = I_{\rm C}/I, \tag{2}$$

where $I_{\rm C}$ and I are the ionic strengths of electrolyte C and the total one of the mixed electrolyte, respectively. The activity coefficient of solute B $(\gamma_{\rm B})$ in the ternary solution may be obtained from the following equations:

$$\ln \gamma_{\rm B} = \ln \Gamma_{\rm B} + \ln R_{\rm B} + \int_0^{M_{\rm B}\phi_{\rm B}} f(m, M_{\rm B}, x) \, \mathrm{d}(M_{\rm B}\phi_{\rm B})$$
 (3)

and

$$f(m, M_{\rm B}, x) = \left(\frac{\partial m}{\partial \ln x}\right) / m^2 + 1/m - 1/M_{\rm B}, \tag{4}$$

where Γ_B is the activity coefficient of solute B in the binary solution in equilibrium with the ternary solution, R_B is the isopiestic ratio (M_B/m) . Approximating R_B to¹⁰

$$R_{\rm B} = 1 - a_{\rm B}x - b_{\rm B}x^2, \tag{5}$$

Eq. 3 reduces to

$$\ln \gamma_{\rm B} = \ln \Gamma_{\rm B} + \ln R_{\rm B} + x^2 \int_0^{M_{\rm B}\phi_{\rm B}} \frac{b_{\rm B}}{M_{\rm B}} d(M_{\rm B}\phi_{\rm B}). \tag{6}$$

The activity coefficient of solute C can also be obtained from the same procedure.

Free Energy of Transfer $\Delta G^{\rm tr}$ at Constant Mole Fraction (N). Using the activity coefficient of each solute in a ternary solution calculated by the above method, the free energy of transfer of one component from the binary to the ternary solution at constant mole fraction (N) can be obtained¹¹⁾ as follows. In the case of solute C being transferred from water to a solution containing solute B, the free energy of transfer is defined as

$$\Delta G_{\rm c}^{\rm tr} = \nu_{\rm c} R T \ln \left(f_{\rm c} * / f_{\rm c}^{0} \right), \tag{7}$$

where f_c^* and f_c^0 are the activity coefficients of solute C in mole fraction scale in the ternary and the binary solutions, respectively. They are defined by

$$f_{\rm c}^{\,0} = \gamma_{\rm c}^{\,0} (1 + 0.001 M_{\rm A} \nu_{\rm c} m_{\rm c}^{\,0}), \tag{8}$$

$$f_{\rm C}^* = \gamma_{\rm C}(1 + 0.001(\nu_{\rm C} m_{\rm C}' + \nu_{\rm B} m_{\rm B})), \tag{9}$$

and

$$m_{\rm C}' = (1 + 0.001 M_{\rm A} \nu_{\rm B} m_{\rm B}) m_{\rm C}^{\,0},$$
 (10)

where m_0^0 and γ_0^0 are the molality and the molal activity coefficient of solute C in the binary solution, while m_0' and γ_0 are the corresponding quantities in the ternary solution, having the same mole fraction (N_0) as the binary solution. M_{Λ} is the molecular weight of water. Free energy of transfer of solute B was also obtained from the same method.

Excess Free Energy Change on Mixing Solution at Constant Ionic Strength $\Delta_{\rm m}G^{\rm ex}$. $\Delta_{\rm m}G^{\rm ex}$ is defined by ¹²)

$$\Delta_{\rm m} G^{\rm ex}(x, I) = G^{\rm ex}(x, I) - xG^{\rm ex}(1, I) - (1 - x)G^{\rm ex}(0, I), \tag{11}$$

where $G^{\text{ex}}(1, I)$ and $G^{\text{ex}}(0, I)$ are the excess free energies of binary solutions of solute C and B, respectively. $G^{\text{ex}}(x, I)$ is the corresponding quantity in the ternary solution of which the total ionic strength equals I and the fraction of ionic strength is x. The excess free energy of pseudo-binary salt solutions is defined by

$$G^{\mathbf{ex}}(x, I) = \nu R T I(\ln \gamma_{\pm} + (1 - \phi)), \tag{12}$$

where γ_{\pm} and ϕ are the mean activity coefficient and osmotic coefficient of the solute, respectively, R being the gas constant and T the absolute temperature. By applying the Gibbs-Duhem relation to Eq. 12, one obtains

$$G^{\text{ex}}(x, I) = -2\nu IRT \int_0^{\sqrt{I}} \frac{1 - \phi}{\sqrt{I}} d\sqrt{I}.$$
 (13)

The integration of Eq. 13 was carried out by computer program assuming Relation 14 between ϕ and I at the same fraction x.

$$\phi = 1 - \sum_{i=1}^{5} q_i I^{i/2} \quad (q_1 = 0.3902).$$
 (14)

Theoretically, $\Delta_{\rm m}G^{\rm ex}(x,\ I)$ would be expressed as a power series of the ionic strengths of each component in the mixed solution and those coefficients of the power series are related to the magnitudes of various interactions of ions. Friedman's extention based on Mayer's ionic cluster expansion theory has been adopted which yields the following expression:

$$\Delta_{\rm m} G^{\rm ex}(x, I) = I^2 R T x (1 - x) (g_0 + g_1 (1 - 2x) + \cdots), \quad (15)$$

where g_t is the interaction parameter. The first two interaction parameters of Eq. 15 were determined graphically by plotting $\Delta_{\rm m}G^{\rm ex}(x,I)/I^2RTx(1-x)$ against

Results

Isopiestic Solutions. The isopiestic and related data are shown in Table 1. The second column gives the molalities of the reference GuBr solutions (M_B) having the osmotic coefficients ϕ_B . The next two columns show the molalities of GuBr (m_B) and those of Bu₄NBr (m_C) , respectively, in the ternary solutions being isopiestic with the reference solution. The fifth shows the ionic mole fraction of solute C (x), the sixth

TABLE 1. ISOPIESTIC DATA

TABLE 1. ISOPIESTIC DATA						
Set	$M_{ m B}$	$m_{ m B}$	$m_{ m C}$	x	$R_{ m B}$	
1.	0.12221	0.12221	0.0	0.0	1.0	
		0.10464	0.01867	0.15141	0.99106	
		0.08355	0.04107	0.32955	0.98076	
		0.06425	0.06152	0.48914	0.97170	
		0.04203	0.08507	0.66930	0.96167	
		0.02060	0.10772	0.83944	0.95239	
		0.0	0.12949	1.0	0.94380	
2.	0.26367	0.26367	0.0	0.0	1.0	
		0.23063	0.04062	0.14976	0.98263	
		0.19278	0.08249	0.29966	0.96550	
		0.17921	0.09930	0.35654	0.95906	
		0.11978	0.16115	0.57367	0.93484	
		0.08428	0.20066	0.70423	0.92054	
		0.04607	0.25108	0.84496	0.90535	
		0.0	0.29738	1.0	0.88889	
3.	0.31266	0.31266	0.0	0.0	1.0	
		0.28110	0.03505	0.11087	0.98894	
		0.23878	0.08203	0.25569	0.97459	
		0.19178	0.13415	0.41160	0.95927	
		0.16472	0.16414	0.49912	0.95074	
		0.07706	0.26115	0.77214	0.92444	
		0.05007	0.29099	0.85319	0.91673	
		0.0	0.34629	1.0	0.90289	
4.	0.39966	0.39966	0.0	0.0	1.0	
		0.35325	0.05422	0.13307	0.98083	
		0.30481	0.11040	0.26589	0.96254	
		0.23660	0.18833	0.44321	0.94053	
		0.17369	0.25978	0.59931	0.92200	
		0.11716	0.32431	0.73461	0.90528	
		0.07196	0.37236	0.83804	0.89947	
		0.0	0.44790	1.0	0.89228	

Table 1. (Continued)

		*******			Table 1.	(Continued)					
Set	$M_{ m B}$	$m_{ m B}$	$m_{ m C}$	x	$R_{ m B}$	Set	$M_{ m B}$	$m_{ m B}$	$m_{ m C}$	х	$R_{ m B}$
5. 6.	0.53096 0.53388	0.53096 0.44768 0.37483 0.92851 0.22420 0.15374 0.06859 0.0	0.0 0.10839 0.19676 0.29312 0.37511 0.45871 0.54761 0.61004	0.0 0.19492 0.34424 0.49545 0.62591 0.74898 0.88868 1.0	1.0 0.95484 0.92892 0.89744 0.88595 0.86694 0.86166 0.87030	12.	1.67762 1.80300	1.67762 1.57633 1.44222 1.22701 0.94534 0.57339 0.23091 0.0 1.80300	0.0 0.25937 0.56080 0.99595 1.41250 1.73649 1.93762 2.03654 0.0	0.0 0.14129 0.27998 0.44803 0.59906 0.75177 0.89352 1.0	1.0 0.91389 0.83755 0.75468 0.71151 0.72628 0.77362 0.82376
		0.47321 0.40394 0.33408 0.26119 0.17900 0.09331 0.0	0.07729 0.16405 0.25099 0.33923 0.43384 0.52753 0.62391	0.14040 0.28883 0.42899 0.56499 0.70792 0.84971	0.96982 0.93995 0.91250 0.88917 0.87116 0.85994 0.85571			1.70207 1.57316 1.35551 1.04272 0.63404 0.25284 0.0	0.28006 0.61171 1.10026 1.55799 1.92017 2.12126 2.21554	0.14129 0.27998 0.44803 0.59906 0.75177 0.89352 1.0	0.90963 0.82522 0.73419 0.69327 0.70589 0.75932 0.81380
7.	0.58144	0.58144 0.48203 0.43461 0.36542 0.27883 0.18736 0.08706 0.0	0.0 0.08059 0.18851 0.27270 0.37751 0.48208 0.59004 0.67562	0.0 0.14324 0.30253 0.42735 0.57515 0.72012 0.87142 1.0	1.0 0.96763 0.93312 0.91119 0.88588 0.86855 0.85872 0.86060	14.	1.87978	1.87978 1.75358 1.63252 1.42272 1.12686 0.69197 0.25058 0.0	0.0 0.33271 0.66385 1.16103 1.64062 2.07502 2.34963 2.44853	0.0 0.15947 0.28909 0.44936 0.59282 0.74992 0.90363 1.0	1.0 0.90101 0.81859 0.72754 0.67923 0.67936 0.72293 0.76772
8.	0.71676	0.71676 0.64232 0.56157 0.46199 0.36959 0.26635 0.11646 0.0	0.0 0.10545 0.21199 0.34391 0.46041 0.57942 0.57347 0.84834	0.0 0.14102 0.27404 0.42674 0.55471 0.68508 0.86362 1.0	1.0 0.95854 0.92658 0.88940 0.86348 0.84746 0.83937 0.844490	15.	2.39195	2.39195 2.27552 2.16287 2.07564 1.65860 1.11530 0.57681 0.0	0.0 0.49227 1.16538 1.93970 2.39766 2.92231 3.21014 3.33282	0.0 0.17786 0.35018 0.48307 0.59110 0.72377 0.84768 1.0	1.0 0.86420 0.71868 0.59570 0.58969 0.59242 0.63163 0.71770
9.	0.87984	0.87984 0.80209 0.71083 0.61126 0.51319 0.25506 0.14756 0.0	0.0 0.10375 0.24181 0.37979 0.50646 0.77737 0.87550 1.00303	0.0 0.11453 0.25383 0.38322 0.49670 0.75295 0.85576 1.0	1.0 0.97130 0.92358 0.88779 0.86288 0.85220 0.86000 0.87718	16.	2.41652	2.41652 2.30000 2.18895 2.05673 1.68454 1.13067 0.58417 0.0	0.0 0.49756 1.17943 1.92202 2.43516 2.96258 3.25110 3.37008	0.0 0.17785 0.35015 0.48307 0.59110 0.72377 0.84768 1.0	1.0 0.86363 0.71728 0.60724 0.58647 0.59025 0.62996 0.71674
10.	0.86845	0.86845 0.78189 0.68938 0.57048 0.45760 0.32938 0.14289 0.0	0.0 0.12837 0.26023 0.42467 0.57005 0.71653 0.90486 1.03178	0.0 0.14102 0.27404 0.42674 0.55471 0.68508 0.86362 1.0	1.0 0.95407 0.91453 0.87268 0.84509 0.83033 0.82887 0.84170	17.	2.78046	2.78046 2.74880 2.74060 2.67769 2.37537 1.56784 0.67519 0.0	0.0 0.44417 1.06264 1.97325 2.91612 3.61773 3.88295 3.78731	0.0 0.13911 0.27940 0.42427 0.55110 0.69765 0.85187 1.0	1.0 0.87081 0.73108 0.59783 0.52546 0.53619 0.61000 0.73415
11.	1.27620	1.27620 1.13238 0.98478 0.80164 0.61840 0.44449 0.24695 0.0	0.0 0.25725 0.52191 0.79482 1.02140 1.20608 1.37809 1.55424	0.0 0.18512 0.44639 0.49786 0.62288 0.73071 0.84804 1.0	1.0 0.91838 0.84702 0.79940 0.77828 0.77319 0.78534 0.82111	18.	2.91109	2.91109 2.88161 2.90398 2.88040 2.55490 1.67344 0.72096 0.0	0.0 0.46563 1.12599 2.12264 3.13652 3.86139 4.14620 3.98861	0.0 0.13911 0.27940 0.42427 0.55110 0.69765 0.85187	1.0 0.86970 0.72236 0.58187 0.51149 0.52596 0.59811 0.72985

Table 2. Osmotic coefficients of pseudo-binary salt with various ionic mole fraction x

$\begin{array}{ c cccccccccccccccccccccccccccccccccc$	738 161
0.2 0.8783 0.8713 0.8644 0.8576 0.8511 0.8446 0.8383 0.8321 0.82 0.3 0.8588 0.8494 0.8402 0.8312 0.8228 0.8147 0.8071 0.7998 0.79	161
$0.3 \qquad 0.8588 \qquad 0.8494 \qquad 0.8402 \qquad 0.8312 \qquad 0.8228 \qquad 0.8147 \qquad 0.8071 \qquad 0.7998 \qquad 0.79$	
	100
0.4 0.9494 0.9217 0.9904 0.9005 0.7007 0.7004 0.7999 0.7746 0.76	133
0.4 0.0434 0.0317 0.0204 0.0093 0.7997 0.7904 0.7022 0.7740 0.70	83
$0.5 \qquad 0.8302 \qquad 0.8163 \qquad 0.8031 \qquad 0.7907 \qquad 0.7796 \qquad 0.7696 \qquad 0.7611 \qquad 0.7538 \qquad 0.47999 \qquad 0.7699 \qquad 0.7$	'8 4
0.6 0.8186 0.8024 0.7874 0.7736 0.7616 0.7511 0.7425 0.7359 0.73	319
$0.7 \qquad 0.8080 \qquad 0.7897 \qquad 0.7729 \qquad 0.7579 \qquad 0.7450 \qquad 0.7342 \qquad 0.7259 \qquad 0.7203 \qquad 0.7729 \qquad 0.7999 \qquad 0.79$	79
0.8	57
0.9 0.7891 0.7665 0.7464 0.7992 0.7149 0.7039 0.6964 0.6934 0.69	48
1.0 0.7804 0.7559 0.7342 0.7160 0.7011 0.6901 0.6830 0.6816 0.68	849
$1.2 \qquad 0.7640 \qquad 0.7358 \qquad 0.7112 \qquad 0.6911 \qquad 0.6751 \qquad 0.6643 \qquad 0.6583 \qquad 0.6599 \qquad 0.6699 \qquad 0.66999 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.66999 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.66999 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.6699 \qquad 0.66999 \qquad 0.6699 \qquad $	70
1.4 0.7487 0.7173 0.6900 0.6681 0.6511 0.6405 0.6356 0.6402 0.65	05
1.6 0.7341 0.7001 0.6703 0.6467 0.6287 0.6183 0.6144 0.6216 0.63	46
1.8 0.7201 0.6839 0.6521 0.6267 0.6077 0.5975 0.5945 0.6039 0.61	87
2.0 0.7068 0.6687 0.6351 0.6079 0.5882 0.5780 0.5757 0.5867 0.60	27
2.5 0.6765 0.6345 0.5975 0.5662 0.5447 0.5341 0.5328 0.5455 0.56	15
3.0 0.6524 0.6044 0.5652 0.5307 0.5081 0.4966 0.4954 0.5067 0.52	07
3.5 0.6380 0.5770 0.5357 0.4999 0.4773 0.4646 0.4630 0.4715 0.48	49
$4.0 \qquad 0.6377 \qquad 0.5508 \qquad 0.5060 \qquad 0.4719 \qquad 0.4505 \qquad 0.4371 \qquad 0.4353 \qquad 0.4416 \qquad 0.4671 \qquad 0.4871 \qquad 0.48$	06

the isopiestic ratio (R_B) .

Activity Coefficients. The activity coefficients of guanidinium bromide (y_B) and tetrabutylammonium bromide (γ_c) for various ionic mole fractions obtained from Mckay and Perring's method are shown in Figs. 1 and 2, respectively. Each activity coefficient decreased as the total molality increased. In the system of the common ion mixing, the $\log \gamma$ curves for each electrolyte in aqueous ternary solutions with constant ionic mole fraction plotted against the total molality are usually located between those curves for the two binary systems. Put another way, the higher log γ values of the two electrolytes decreases on moving from the binary system to the ternary one, and vice versa. As shown in Fig. 1, the log γ values of guanidinium bromide in the H₂O-GuBr-Bu₄NBr system obeyed this rule in the concentration range studied, since the log y values of GuBr

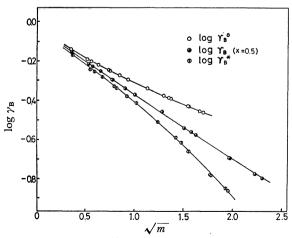


Fig. 1. Activity coefficient of GuBr (solute B) γ_B , plotted against \sqrt{m} . $\gamma_B{}^0$ is the activity coefficient in binary solution of solute B. $\gamma_B{}^*$ is the activity coefficient of solute B in the solution containing only solute C (trace activity coefficient of B).

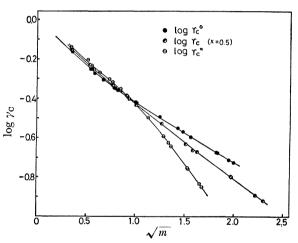
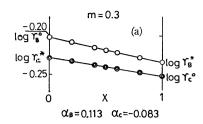


Fig. 2. Activity coefficient of Bu_4NBr (solute C) γ_{C} , plotted against \sqrt{m} . γ_{C}^{0} is the activity coefficient in binary solution of solute C. γ_{C}^{*} is the activity coefficient of solute C in the solution containing only solute B (trace activity coefficient of C).


(log γ_B^0) were higher than those of Bu₄NBr (log γ_c^0) in each binary solution at the same molalities. As seen in Fig. 2, the activity coefficients of Bu₄NBr (log γ_c^0) in this ternary system were higher than those in the binary solution (log γ_c^0) below 1 molal, while the log γ_c^0 values were lower than log γ_c^0 above 1 molal. Therefore the two curves cross each other around 1 molal. In order to express more clearly the influence of one electrolyte on the activity coefficient of the other in the ternary system, extended Harned's equation have been proposed as follows: ^{13,14})

$$\log \gamma_{\rm B} = \log \gamma_{\rm B}{}^{\rm 0} - \alpha_{\rm B} m_{\rm C} - \beta_{\rm B} m_{\rm C}{}^{\rm 2}$$
$$= \log \gamma_{\rm B}{}^{\rm 0} - \alpha_{\rm B} m_{\rm X} - \beta_{\rm B} m^2 x^2 \tag{16}$$

and

$$\log \gamma_{\rm C} = \log \gamma_{\rm C}{}^{0} - \alpha_{\rm C} m_{\rm B} - \beta_{\rm C} m_{\rm B}{}^{2}$$

$$= \log \gamma_{\rm C}{}^{0} - \alpha_{\rm C} m (1-x) - \beta_{\rm C} m^{2} (1-x)^{2}, \quad (17)$$

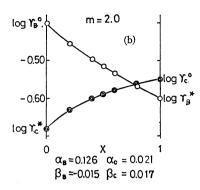


Fig. 3. (a) The variation of two activity coefficients against x at the total molality of 0.3. (b) The variation of two activity coefficients against x at the total molality of 2.0.

where α and β are the empirical constants which represent the type and magnitude of interionic interactions. In Figs. 3-a and 3-b, the relation between the activity coefficient of each salt and the mole fraction of Bu₄NBr (x) are shown at total molality 0.3m and 2.0m, respectively. In Fig. 3-a, $\log \gamma_B$ decreases almost linearly with the increase of x, $\log \gamma_c$ increases from $\log \gamma_c^0$ to $\log \gamma_c^*$ (trace activity coefficient of Bu₄NBr) linearly as x decreases from 1 to 0. The values of α_B and $\alpha_{\rm C}$ were 0.113 and -0.083, respectively, and the values of β were nearly zero. As seen in Fig. 3-b, however, an abnormal change appeared when the total molality was at 2.0m. The values of log γ_B decreased with the increase of value of x, while $\log \gamma_{\rm c}$ decreased with the decrease of x. Therefore, the two curves were non-linear and the values of α_B and α_C were 0.126 and 0.021, respectively, while β_B and β_C were -0.015 and 0.017, respectively. Curves of this type which cross have so far been rarely reported in aqueous ternary solutions containing two kinds of inorganic electrolytes.

Free Energy of Transfer $\Delta G^{\rm tr}$. It is difficult to distinguish whether the change of the activity coefficient are based on salting-out, salting-in or "mutual" effect by plotting the activity coefficients at constant x against total molality. In the case of $\Delta G^{\rm tr}$, it is distinguishable because the free energy of transfer can be calculated from Eqs. 7—10, converting the activity coefficients to those in the mole fraction scale. They are shown in Tables 3-a and 3-b. Negative values of $\Delta G^{\rm tr}$ were obtained for each electrolyte and the absolute value of $\Delta G^{\rm tr}$ for each electrolyte increased with the molality of the other.

Excess Free Energy Change of Mixing $\Delta_{\mathbf{m}}G^{\mathbf{ex}}$. The osmotic coefficients of pseudo-binary salts (ϕ) for various ionic mole fraction x are shown in Table 2. These

Table 3-a. Free energy of transfer of tetrabutylammonium bromide from water to guanidinium bromide solution at constant mole fraction $N_{\rm C}$

m	$N_{\rm C}$	$m_{ m B}$					
$m_{ m C}$	14C	0.5	1.0	2.0	3.0		
0.0	0.0000	—776	-1116	- 1994	-2304		
0.5	0.0089	-278	475	-932	-1357		
1.0	0.0174	—181	-386	-768	-1090		

Table 3-b. Free energy of transfer of guanidinium bromide from water to tetrabutylammonium bromide solution at constant male fraction N.

Mode Paration 118						
$m_{ m B}$	$N_{ m B}$	$m_{ m C}$				
		0.5	1.0	2.0	3.0	
0.0	0.0000	- 790	-1076	1530	1924	
0.5	0.0089	-200	-548	-956	-1302	
1.0	0.0174	-141	-508	-871	-1168	

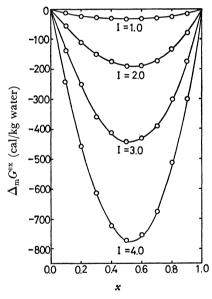


Fig. 4. Excess free energy change of mixing $\Delta_{\rm m}G^{\rm ex}$ against x at the constant total ionic strength I.

Table 4. Interaction parameters, g_0 and g_1

I	$g_0(\text{mol}^{-1})$	$g_1 \pmod{-1}$
0.5	-0.1362	0.0148
1.0	-0.2382	0.0298
1.5	-0.2965	0.0530
2.0	-0.3228	0.0581
2.5	-0.3298	0.0539
3.0	-0.3273	0.0466
3.5	-0.3221	0.0386
4.0	-0.3219	0.0386

values were read from the ϕ -I curves obtained by a least squares fit to Eq. 14. $\Delta_{\rm m}G^{\rm ex}$ at constant ionic strength was obtained from Eqs. 13 and 11 as shown in Fig. 4. The curves are nearly parabolic but the minimum point is slightly displaced towards the right from the

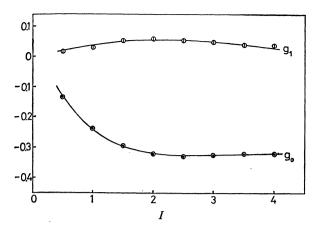


Fig. 5. Interaction parameters g_0 and g_1 plotted against I.

vertical line of x=0.5. The value of $\Delta_{\rm m}G^{\rm ex}$ at the minimum decreases as the total ionic strength increases. The interaction parameters g_0 and g_1 obtained from Eq. 15 are shown in Fig. 5 and Table 4. The negative values of g_1 slightly increased up to about I=2.0 and decreased with the increase of I.

Discussion

In most aqueous ternary systems containing two kinds of inorganic electrolytes with a common anion, the relation between log γ and the concentration of each electrolyte obeys "Harned's rule" for a wide range of concentration. 14) This means that the values the interaction parameter for a mixed cation pair corresponds almost to the arithmetic mean value of those for like cation pairs. 15) As shown in Fig. 3-a, the system of H₂O-GuBr-Bu₄NBr showed a similar behavior at low concentration to the aqueous ternary systems with two kinds of inorganic electrolytes, although the slopes of the $\log \nu$ vs. x curves were considerably larger. However, as seen in Fig. 3-b, when the total molality increased, the $\log \gamma$ vs. x curves were quite different from those of Fig. 3-a. This implies that Harned's rule does not hold at high concentration, that is, the attractive interaction between Bu₄N⁺ and Gu⁺ increases and dominates the other pair interactions. This salting-in effect is expressed in terms of the free energy of transfer ΔG^{tr} similar to that of the H_2O -urea- Bu_4NBr system. The values of ΔG^{tr} for Bu₄NBr in the H₂O-GuBr-Bu₄NBr system are almost twice as large as those in the H₂O-urea-Bu₄NBr system.5) This result is closely related to the effective concentration of these solutes in the denaturation of proteins in aqueous solutions. As seen in Fig. 4, the values of $\Delta_{\mathrm{m}}G^{\mathrm{ex}}$ are all negative and depend parabolically on x at all ionic strengths, suggesting that the g_0 terms are more important than the g₁ terms in the concentration region studied.7) However the skewness of the curves at high ionic strength shows that the g_1 terms cannot be ignored. As shown in Fig. 5 and Table 4, the positive g_1 values increased as the concentration increased up to around 2.0m and decreased above this concentration. However the magnitudes of g_0 are 6 or 10 times larger than those of g_1 . In the symmetrical mixture of electrolyte, g_0 and g_1 are expressed as¹⁶⁾

$$g_0 = (g^{\text{B+C+}} - g^{\text{B+B+}} - g^{\text{C+C+}}) + I(g^{\text{B+C+Br-}} - g^{\text{B+B+Br-}} - g^{\text{C+C+Br-}})$$
+ triplet type of same cations (18)

and

$$g_1 = I(g^{B+C+C+} - g^{B+B+C+} + g^{B+B+B+} - g^{C+C+C+}), \tag{19}$$

where B⁺ and C⁺ are Gu⁺ and Bu₄N⁺, respectively, and g^{ij} is the interaction parameter of free energy of ions i and j, g^{ijk} is the same quantity of three ions i, j, and k. Though it will be of great interest to find the values of g^{ij} and g^{ijk} , it is quite impossible using this experimental approach. The g_0 coefficients listed in Table 4 are related to the coefficient of Harned's equation¹²) as

$$g_0 = -2.303((\alpha_B + \alpha_C) + I(\beta_B + \beta_C)) + \cdots$$
 (20)

The pairwise interaction parameter in Eq. 18, $(g^{B+C^+}-g^{B+B^+}-g^{C+C^+})$ corresponds to -2.303 $(\alpha_B+\alpha_C)$. The values of this ion pair term at 0.3m and 2.0m are -0.069 and -0.339, respectively. The sign and magnitude of the values at 2.0m are almost the same as those of g_0 in Table 4 suggesting that the pairwise interaction is quite important at this concentration. The negative sign of the pairwise interaction term implies that the mixed cation pair Gu+-Bu₄N+ is more favored over the like ion pairs Gu+-Gu+ and Bu₄N+-Bu₄N+. In a previous paper,¹⁷⁾ it was reported that guanidinium bromide formed a crystalline complex with tetrabutylammonium bromide at high concentrations in aqueous solutions. From this fact and the large negative values of the pairwise interaction term in Eq. 18 at moderate concentrations, it seems plausible that the formation of mixed cation pair, Gu+-Bu₄N+ makes an important contribution to the mutual salting-in. Friedman's treatment is not sufficiently rigorous in which water is regarded as a continuum solvent with the dielectric constant of 80. Therefore the interionic interaction through the change of water structure caused by the addition of ions has to be considered. effect may work as an attractive or repulsive force between ions. Previously,9) the guanidinium ion was reported to be a structure breaker ion, while Bu₄N+ was regarded as a hydrophobic structure maker which formed the clathrate hydrate in aqueous solution. As pointed out in a previous paper,8) the interaction between Gu⁺ and Bu₄N⁺ decreases the water structure around Bu₄N+. This effect also makes a negative contribution to g_0 values even if these two kinds of cations do not form a mixed ion pair.

It is interesting to compare $\Delta_{\rm m}G^{\rm ex}$ and $\Delta G^{\rm tr}$ of this system and those of the H₂O-KBr-Pr₄NBr⁷) and H₂Ourea-Bu₄NBr⁵⁾ systems. In the H₂O-KBr-Pr₄NBr system, $\Delta_{\rm m}G^{\rm ex}$ vs. x curves are usually parabolic as in the case of this system, but the sign of $\Delta_m G^{ex}$ is opposite. Wen⁶⁾ and Wood¹⁸⁾ concluded from the measurements of free energy and heats of mixing that Pr₄N+-Pr₄N+ was favored over the mixed ion pair in that system. Both the potassium²⁰⁾ and guanidinium ions are classified as structure breakers but the mechanism of the breaking of the water structure should be quite different from each other,7,8) since the effects of those ions toward hydrophobic hydration are quite different. On the other hand, $\Delta G^{\rm tr}$ of Bu₄NBr from water to the aqueous solutions of urea and GuBr are both negative and the magnitudes of ΔG^{tr} are comparable to each other.

These results suggest that the shape, size, and functional groups play important roles in the effect of organic solutions on hydrophobic hydration at high concentration. The next stage, in progress now, is to measure the heat of mixing of these salts in aqueous solution.

References

- 1) D. R. Robinson and W. P. Jencks, J. Am. Chem. Soc., 87, 2462, 2470 (1965).
 - 2) W. Kauzmann, Adv. Protein Chem., 14, 1 (1959).
 - 3) C. Tanford, Adv. Protein Chem., 23, 121 (1968).
- 4) D. B. Wetlaufer, S. K. Malik, L. Stoller, and R. L. Coffin, *J. Am. Chem. Soc.*, **86**, 508 (1966).
- 5) W-Y. Wen and C. L. Chen, J. Phys. Chem., 73, 2895 (1969).
- 6) T. S. Salma and J. C. Ahluwalia, J. Phys. Chem., **76**, 1366 (1972): R. B. Cassel and W-Y. Wen, *ibid.*, **76**, 1370 (1972).
- 7) W-Y. Wen, K. Miyajima, and A. Otsuka, J. Phys. Chem., 75, 2148 (1971).
- 8) K. Miyajima, H. Yoshida, and M. Nakagaki, *Bull. Chem Soc. Jpn.*, **51**, 2508 (1978).
 - 9) K. Miyajima, K. Inari, S. Hamaguchi, H. Yoshida,

- and M. Nakagaki, Nippon Kagaku Kaishi, 1976, 366.
- 10) H. A. C. Mckay and J. K. Perring, *Trans. Faraday Soc.*, **49**, 163 (1953); R. A. Robinson, *J. Am. Chem. Soc.*, **65**, 662 (1961).
 - 11) H. Uedaira, Bull. Chem. Soc. Jpn., 48, 2006 (1975).
- 12) H. L. Friedman, J. Chem. Phys., 32, 1351 (1960); H. L. Friedman, "Ionic Solution Theory," Interscience Pub. New York, London (1962), Vol. 3.
- 13) R. A. Robinson and R. H. Stokes, "Electrolyte Solutions," 2nd ed, Butterworth London (1970).
- 14) H. S. Harned and B. B. Owen, "Physical Chemistry of Electrolytic Solutions," 3rd ed, Reinhold (1958).
- 15) E. A. Guggenheim, Trans. Faraday Soc., 62, 3446 (1966).
- 16) R. H. Wood and H. L. Anderson, J. Phys. Chem., 70, 992 (1966).
- 17) K. Miyajima, H. Yoshida, and M. Nakagaki, *Bull. Chem. Soc. Jpn.* **50**, 2854 (1977).
- 18) R. H. Wood and H. L. Anderson, J. Phys. Chem., 71, 1871, (1967).
- 19) K. Miyajima, K. Inari, and M. Nakagaki, Nippon Kagaku Kaishi, 1974, 2031.
- 20) E. R. Nitingale, Jr., "Chemical Physics of Ionic Solutions," ed by B. E. Conway and R. G. Barradas, John Wiley & Sons Inc., New York (1966).